مقایسه روش‌های شبکه عصبی مصنوعی در مدل‌سازی فرایند تراش کاری ماده مرکب زمینه پلیمری

Authors

  • محمدرضا دشت بیاض استادیار، گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه شهید باهنر کرمان
Abstract:

در این تحقیق ماده مرکب زمینه اپوکسی پرشده با ذرات آلومینیم تهیه گردیده و با تغییر شرایط مختلف تراش‌کاری شامل: سرعت برش، کسر وزنی ذرات، عمق برش و نرخ پیشروی از قطعات مواد مرکب براده‌برداری صورت گرفته است. سپس زبری سطح قطعات اندازه‌گیری شده و برای پیش‌بینی اثر چهار عامل تراش‌کاری بر زبری سطح قطعات، با استفاده از دو نوع شبکه عصبی شامل: شبکه عصبی چند لایه پرسپترون و شبکه عصبی با تابع پایه شعاعی، مدل‌سازی انجام شده است. ضرایب همبستگی بین داده‌های خروجی مدل‌ها و داده‌های تجربی نشان داده است که شبکه چند لایه پروسپترون نسبت به شبکه با تابع پایه شعاعی انطباق بهتری با نتایج آزمایشگاهی نشان می‌دهد (ضریب همبستگی 835/0 برای شبکه چند لایه پرسپترون و 524/0 برای شبکه با تابع پایه شعاعی). به علت دارا بودن ضریب همبستگی بالاتر در شبکه عصبی چند لایه پرسپترون، این شبکه برای مدل‌سازی تاثیر عوامل تراش‌کاری بر زبری سطح پیشنهاد شده است.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

مقایسه روش های شبکه عصبی مصنوعی در مدل سازی فرایند تراش کاری ماده مرکب زمینه پلیمری

در این تحقیق ماده مرکب زمینه اپوکسی پرشده با ذرات آلومینیم تهیه گردیده و با تغییر شرایط مختلف تراش کاری شامل: سرعت برش، کسر وزنی ذرات، عمق برش و نرخ پیشروی از قطعات مواد مرکب براده برداری صورت گرفته است. سپس زبری سطح قطعات اندازه گیری شده و برای پیش بینی اثر چهار عامل تراش کاری بر زبری سطح قطعات، با استفاده از دو نوع شبکه عصبی شامل: شبکه عصبی چند لایه پرسپترون و شبکه عصبی با تابع پایه شعاعی، مد...

full text

مدلسازی کاهش COD پساب صنایع پتروشیمی توسط روشهای طراحی آزمایش و شبکه عصبی مصنوعی

در این مقاله ، روش تخریب فتوکاتالیستی به عنوان روشی مناسب جهت تصفیه پساب و حذف اکسیژن مورد نیاز شیمیایی )COD(یکی از واحدهای تولیدی صنایع پتروشیمی معرفی شده و پارامترهای موثر در عملکرد این فرآیند مورد بررسی قرار گرفته است.برای این منظور،با استفاده از فتوکاتالیست تجاری دی اکسید تیتانیم و اندازه‌گیری تجربی پارامتر اکسیژن مورد نیاز شیمیایی،درصد کاهش این پارامتر در فرآیند فتوکاتالیستی در مدت زمان 90...

full text

پیش بینی زبری سطح در تراش کاری خشک به کمک شبکه های فازی- عصبی تطبیقی

Optimization of machining parameters is very important and the main goal in every machining process. Surface finishing prediction is a pre-requirement to establish a center for automatic machining operations. In this research, a neuro-fuzzy approach is used in order to model and predict the surface roughness in dry turning. This approach has both the learning capability of neural network and li...

full text

پیش بینی زبری سطح در تراش کاری خشک به کمک شبکه های فازی- عصبی تطبیقی

پیش بینی زبری سطح یک پیش نیاز اساسی برای ایجاد یک مرکز ماشین کاری خودکار می باشد. بهینه سازی فرآیند ماشین کاری در این راستا از اهمیت خاصی برخوردار است. در این مقاله از رهیافت ترکیبی فازی- عصبی (سیستم استنتاج فازی- عصبی تطبیقی ANFIS) به منظور پیش بینی زبری سطح در تراش کاری خشک استفاده شده است. به طوری که داده های حاصل از آزمایش ها به منظور ایجاد قواعد فازی و ویرایش این قواعد به کمک شبکه های عصبی...

full text

مدلسازی نفوذپذیری سیستم بیوراکتورغشایی با استفاده از شبکه عصبی مصنوعی

مدلسازی برای سیستم های پیچیده ای همچون بیوراکتور غشایی به دلیل امکان اجرای آزمایشهای مجازی زیاد در زمان کوتاه ابزاری قدرتمند است، اگرچه نیازمند اعتبار تجربی و تبدیل فرایند به مدل ریاضی می باشد. در این پژوهش به مدلسازی فرایند فیلتراسیون توسط شبکه های عصبی با استفاده از نرم افزار MATLAB 8.1 (2013) پرداخته شده و از داده های تجربی یک سیستم بیوراکتور غشایی غوطه ور مجهز به غشاء کوبوتا جهت تصفیه فاضلا...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 47  issue 2

pages  85- 100

publication date 2016-01-21

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023